“The law that entropy always increases holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation—well, these experimentalists do bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynamics I can give you no hope; there is nothing for it to collapse in deepest humiliation.”
― Arthur Eddington, The Nature of the Physical World, Chap. 4
But why is that so? Why is the Second Law so “special” among the other laws of physics?
Simply because—as we argue in a paper recently published on Physical Review E and freely available on the arXiv—the Second Law is not so much about physics, as it is about logic and consistent reasoning. More precisely, we argue that the Second Law can be seen as the shadow of a deeper asymmetry that exists in statistical inference between prediction and retrodiction, and ultimately imposed by the consistency of the Bayes–Laplace Rule.
A little bit of background. In the past two decades, thermodynamics has undergone unprecedented progresses. These can be traced back to the developments of stochastic thermodynamics, on the one hand, and the theory of nonequilibrium fluctuations, on the other. The latter, in particular, has shown that the Second Law emerges from a more fundamental “balance relation” between a physical process and its reverse. According to such a balance relation, for example, scrambled eggs are not forbidden to unscramble spontaneously—instead, the probability of such a process is just extremely tiny, compared with that of its more familiar reverse. In turn, entropy—i.e. the thing that “no one knows what it really is”, according to the apocryphal exchange between Shannon and von Neumann—precisely is a measure of such a disparity.
In this paper we go one step further and show that the existence of a disparity is not due to some kind of “physical propensity” that irreversible processes have for unfolding in one direction more likely than in the opposite direction—an explanation that would lead to a circular argument—, but to the intrinsic asymmetry that exists between prediction and retrodiction in inferential logic. We thus conclude that the foundations of the Second Law are not to be found within physics, but one step below, at the level of logic.
A nice little piece written by CQT/NUS outreach is also available here.
It bears note that logic of this sort this may have informed Helmholtz’s reasoning in formulating the Second Law in the first place, which he derived logically from the First Law.
LikeLike